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Although encoded in theoretical works, relationships between the diffraction

symmetry of magnetic structures and magnetic space/superspace groups are

often ignored in practical applications. It is shown that magnetic symmetry

operations have a direct impact through the rotation parts in the diffraction

symmetry of the crystal and can be used to simplify calculations of magnetic

structure factors. Besides, the translation parts can introduce specific systematic

extinctions of magnetic reflections. Another point is that the efficiency and

stability of refinement of magnetic crystal structures, in analogy with the

refinement of nuclear structures, depend on direct application of the magnetic

symmetry in the structure-factor formula. Magnetic symmetry also allows

diffractionally independent magnetic domains and their mutual spatial

orientations to be recognized. The selection of one irreducible representation

can provide extra relationships between magnetic moments which do not

directly affect diffraction symmetry. Thus the combination of both methods

seems to be the most effective way to analyze and refine magnetic structures.

1. Introduction

Ordering of magnetic moments in a crystal can be described

either by magnetic symmetry or by representation analysis

of symmetry properties of the phase transition. The first

approach yields a magnetic (Shubnikov) space group, the

second yields a set of possible irreducible representations

(henceforth irrep) from which we have to select the correct

one or, more generally, the correct combination of several

irreps. Both methods are applicable not only to magnetic

structures having their translation periodicity identical with

the nuclear lattice but also to those being commensurate or

incommensurate with the nuclear translation symmetry.

Respective additional periodicities will be expressed through

magnetic propagation vectors ki .

Magnetic space groups are composed of nuclear symmetry

elements combined with a time inversion sign (see e.g. Belov

et al., 1957a,b). Any magnetic symmetry operation can be

written in the form

ŜS ¼ R; � sjð Þ ð1Þ

where R; � = �1 and s are the proper or improper rotation

matrix, the time inversion sign and the translation part of the

symmetry operation, respectively. Further, we shall concen-

trate mainly on so-called proper magnetic groups (Souvignier,

2006) which do not contain the pure time inversion element

ŜS = ðE;�1j0Þ; these groups allow some ordering of magnetic

moments. The magnetic moment of the atom � related to the

atom � by the equation r� = ŜSr� = Rr� þ s is then

M� ¼ ŜSM� ¼ � det Rð ÞRM�: ð2Þ

The factor detðRÞ is respecting the fact that the magnetic

vector is an axial vector. The concept of magnetic space group

has been generalized to magnetic modulated structures by

Janner & Janssen (1980) by applying superspace theory (de

Wolff, 1974; de Wolff et al., 1981).

The magnetic space and superspace groups give a

phenomenological description of magnetic structures. The

symmetry operations of the magnetic group define a unique

way of calculating magnetic moments of all atoms of the

magnetic orbit from one representative atom of the orbit.

Magnetic structures can arise after phase transitions from

a parent paramagnetic phase for which some symmetry

elements will be lost; the space group of that parent phase is a

direct product of the nuclear space group with time inversion

10. This implies that atoms belonging to a paramagnetic orbit

(which coincides just with the nuclear atomic orbit) may

belong to several magnetic orbits. Such a lowering of sym-

metry is often accompanied by the occurrence of magnetic

domains globally related by proper or improper rotations

corresponding to lost symmetry elements.

Symmetry considerations on the determination of magnetic

structures were given by Alexander (1962), who used irre-

ducible representations of the non-magnetic space group



(nuclear space group) to find corresponding magnetic

configurations. Later the representation analysis was success-

fully applied to a series of magnetic structures by Bertaut

(1968), and since then it has been used as a basic method for

the description and refinement of magnetic structures. Instead

of individual magnetic moments, coefficients of basis functions

belonging to a single selected irrep, defined in the carrier

space made of individual magnetic moments, are used to

describe the magnetic structure. Such an approach is closely

connected to the assumption that a magnetic ordering behaves

according to the Landau theory of second-order phase tran-

sitions. Furthermore, the representation analysis allows

different irreps to be combined for distinct magnetic atoms in

the structure [see, for example, TbFeO3 in Bertaut et al. (1967)

and Bertaut (1968)].

A more consistent approach starts from the magnetic space

group of the paramagnetic phase and its irreducible repre-

sentations. Ordering of magnetic moments can be character-

ized by kernels and epikernels (Ascher, 1977) of those irreps;

one may note that, for example, Stokes & Hatch (1988) refer

to such subgroups as isotropy subgroups.

In relation to this we would like to point out that irreducible

co-representations introduced by Wigner (1959) represent a

common and effective means of handling incommensurate

structures allowing prediction of not only possible orderings of

magnetic moments but also other characteristics such as

magnetically driven ferroelectricity (Tolédano et al., 2009).

The co-representations of the paramagnetic space group have

been used in the analysis of multiferroic systems such as that

of Ribeiro (2007) and Tolédano (2009).

For k = 0 the three-dimensional periodic magnetization

density qmagðrÞ can be expanded into a Fourier series with

coefficients FmagðHÞ, so-called magnetic structure factors,

qmag rð Þ ¼
P
H

Fmag Hð Þ exp �2�iH � rð Þ: ð3Þ

The summation runs over vectors H =
P3

i¼1 Hia
�
i . The

magnetization density can be written as a sum of individual

contributions q�;magðrÞ of all magnetic atoms in the structure,

qmag rð Þ ¼
P

n

PNmag

�¼1

q�;mag rð Þ� r� r� � nð Þ:

The first summation runs over all unit cells in the crystal n =P3
i¼1 niai and the second sum runs over all magnetic atoms in

the first (reference) cell. Then the magnetic structure factor

FmagðHÞ is directly related to the individual atomic magnetic

moments M� according to the equation

Fmag Hð Þ ¼ p
PNmag

�¼1

f� Hj jð ÞM�T� Hð Þ exp 2�iH � r�ð Þ; ð4Þ

where f�, T�ðHÞ and r� are the magnetic form factor, the

anisotropic dispalcement parameter factor and the position of

an atom � in the unit cell, respectively. The coefficient p =

re�=2 converts the magnetic structure factor from Bohr

magnetons to the neutron scattering length in barns

(10�12 cm) in order to unify scales.

The intensity of magnetic diffraction for a non-polarized

neutron beam is related to the magnetic structure factor

according to the fundamental formula of Halpern & Johnson

(1939),

Imag Hð Þ ¼ Fmag Hð Þ
�� ��2� e � Fmag Hð Þ

� �2
; ð5Þ

where e = H=jHj is the unit vector along the scattering vector

H. As nuclear and magnetic diffractions are independent, each

having generally its own distribution of mosaic blocks, the

overall intensity for k = 0 is a sum of two independent

contributions,

I Hð Þ ¼ Inucl Hð Þ þ Imag Hð Þ: ð6Þ

The description of magnetic ordering by means of magnetic

space and superspace groups is used more and more in

theoretical analysis (see, for example, Schobinger-

Papamantellos & Janssen, 2006). However, in practical solu-

tion and refinement of magnetic structures against neutron

diffraction data the symmetry is usually reduced to the trivial

symmetry, with atomic positions restricted by the nuclear

space group and with atomic magnetic moments expressed as

a linear combination of basic functions belonging to the set of

active irreps, determined by a Monte Carlo or annealing

procedure (Wills, 2000). In such an approach magnetic

symmetry is respected but it is not efficiently used, as in the

structure-factor formula the summation runs over all atomic

positions although several of them are often related by

magnetic symmetry operations. Apart from that, it happens

for hexagonal and cubic families that for certain irreps some

basis functions imply that any two of three magnetic moments

belonging to three different magnetic orbits determine the

third (see an example in x3).

On the other hand the magnetic symmetry allows the

number of generated reflections for powder diffraction to be

restricted to independent ones, and for single-crystal data

collection it allows symmetry averaging of measured reflec-

tions. This stabilizes the refinement process and makes

calculations more effective. Probably even more important is

that direct use of magnetic symmetry gives a better basis for

further interpretation of results.

For the direct application of magnetic space groups in

structure determination the two following questions need to

be answered:

(i) How does the magnetic space group affect the diffraction

pattern and systematic extinctions of magnetic reflections?

Can we draw some conclusions about magnetic symmetry

directly from the diffraction pattern? These problems of

diffraction symmetry have not been explicitly discussed in the

literature, maybe because they are too basic, simple and

obvious. Nevertheless, such discussion seems to be necessary

because many magnetic structures solved from diffraction

data are published without mention of magnetic point and

space group and without using a symmetry analysis of the

diffraction for finding the correct solution.

(ii) What are the consequences of all restrictions on the

ordering of magnetic moments following from a single irrep?
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We shall answer these questions in x2 and x3. Finally, in x4,

the results will be generalized to the superspace in order to

extend the description to incommensurate and commensurate

magnetic structures.

2. Magnetic diffraction symmetry for k = 0

Once the magnetic space group of the studied crystal is

known, the magnetic moments of all symmetry-related atoms

of the magnetic orbit can be calculated from a selected

representative position following (2). The fact that the density

distribution function is to be invariant with respect to

symmetry operation (1) can be expressed by

ŜS � qmag rð Þ ¼ � detðRÞRqmag R�1 r� sð Þ
� �

¼ qmag rð Þ;

which leads to

Fmag HRð Þ ¼ ��1 det R�1
� �

exp �2�iH � sð ÞR�1 � Fmag Hð Þ: ð7Þ

According to (5) the intensity of the symmetry-related point is

then

Imag HRð Þ ¼ Fmag HRkð Þ
� �2

� e � R � Fmag HRkð Þ
� �2

¼ Fmag Hð Þ2� e � Fmag Hð Þ
� �2

¼ Imag Hð Þ: ð8Þ

This means that each symmetry operation of the magnetic

point group induces rotation symmetry (proper or improper)

in the magnetic diffraction pattern. Similarly to nuclear

structures an inversion centre is always present even for non-

centrosymmetric groups if anomalous-scattering effects are

neglected. Hence, the magnetic diffraction pattern follows

classical Laue symmetry without any influence of time inver-

sion signs. Thus the observed diffraction symmetry cannot

be directly used for determination of the actual magnetic

symmetry from the list of possible magnetic groups obtained

by combination of nuclear point-group symmetry operations

with the time inversion.

In the case of an invariant subspace of the reciprocal space

containing all vectors H being fixed by the condition HR = R,

equation (7) yields

F�;mag Hð Þ ¼ ��1 det R�1
� �

exp �2�iH � sð ÞR�1 � F�;mag Hð Þ: ð9Þ

An analogous equation for the scalar nuclear density leads

directly to systematic extinctions related to the factor

expð�2�iH � sÞ. For magnetic structure factors, because they

contain the vector quantity of magnetic moment, we obtain

three equations which should be taken into account simulta-

neously and this fact considerably reduces the possible

systematic extinctions. However, for translations (cell center-

ings), equation (9) splits into three separate conditions for

each component, and therefore such extinctions are directly

related to the factor expð�2�iH � sÞ.

For symmetry elements having the rotational part different

from a unit matrix, the extinction rules can still be found from

(9) but additional restrictions of magnetic moments following

from Wyckoff positions are to be taken into account as well.

This can be demonstrated in the following example.

The paramagnetic phase of Ba5Co5ClO13 (Mentré et al.,

2008) has the nuclear symmetry P63=mmc and it contains

three independent magnetic atoms Co (see Table 1). The two

magnetic space groups listed there are those that give non-

zero magnetic moments parallel to the c axis for all three Co

atoms. The three equations (9) then reduce to one. In the case

of P63=mm0c0 the glide plane c0 gives the same extinction

condition l = 2nþ 1 ðh; h; lÞ for both magnetic and nuclear

contributions. While in the case of P603=m0m0c the extinction

condition for magnetic reflections is l = 2n, there is a chance to

observe a non-zero intensity ðh; h; lÞ for l = 2nþ 1 in the

diffraction pattern of the compound, to which the nuclear

structure does not contribute. On the other hand, if any of the

magnetic atoms were not located at the special positions but at

general ones, no systematic extinctions would be induced.

As already mentioned in the Introduction, the ordering of

magnetic moments can reduce both translation and rotation

symmetry of the nuclear structure. In the case that some of

the nuclear point-group operators are forbidden owing to

magnetic ordering, rotationally non-equivalent magnetic

domains may appear. The number of independent domains is

equal to the ratio of the number of symmetry elements in the

paramagnetic (HT) and magnetic (LT) point group.

3. Representation analysis for k = 0

As mentioned above, the complete analysis of the magnetic

ordering should start with the paramagnetic space group and

its irreducible representations. For k = 0 two families of irreps

can be recognized. The first one is formed by irreps where the

pure time inversion element ŜS = ðE;�1j0Þ is represented by a

unit matrix. The minimal allowed symmetry group is then P10,

which is paramagnetic and does not support any magnetic

ordering.

The second family contains irreps where the time inversion

is given as a negative unit matrix. Some of these irreps may

allow non-zero magnetic moments, in which case magnetic

reflections would be observed. The ordering of magnetic

moments can be analyzed, without losing generality, by the

method proposed by Bertaut (1968), i.e. by restriction to the

nuclear space group of the paramagnetic phase. Such a tech-

nique relies on a one-to-one correspondence between the

irreps of the nuclear space group and the irreps of the para-

magnetic space group belonging to the second family; for the

latter irreps matrices of the operations that do not belong to

the nuclear space group are obtained from matrices of the
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Table 1
Independent magnetic Co atoms in Ba5Co5ClO13.

Magnetic vector

Atom Wyckoff position Coordinates P63=mm0c0 P603=m0m0c

Co1 (2a) �33m (0, 0, 1/2) ð0; 0;MzÞ ð0; 0;MzÞ

Co2 (4e) 3m (0, 0, 0.418) ð0; 0;MzÞ ð0; 0;MzÞ

Co3 (4f ) 3m (1/3, 2/3, 0.314) ð0; 0;MzÞ ð0; 0;MzÞ



former irreps simply by multiplying by a negative unit matrix.

This approach will be adopted throughout this section to make

a closer relationship with the basic original papers. However,

for magnetic modulated phases i.e. k 6¼ 0 in x4.2, the full irreps

of the paramagnetic space group have to be used.

We note that the correspondence mentioned above was

used by Opechowski & Dreyfus (1971) in the proof of their

C10–C2 linking theorem through which they argued that

description of spin arrangements by magnetic groups and

description by means of their representations which admit

non-zero magnetic moments are equivalent.

As has been shown (Niggli, 1959; Indenbom, 1959), there is

one-to-one correspondence between one-dimensional real

representations of nuclear space groups and magnetic space

groups of the same geometric class. In relation to this we note

that concerning the symmetry of a diffraction pattern there is

a fundamental difference between displacive and magnetic

phase transitions driven by a one-dimensional real irrep. For

displacive phase transitions when testing all such irreps one

obtains for each a generally distinct set of restrictions to

atomic displacements expressed as linear combinations of

corresponding basis functions. For magnetic phase transitions,

the restrictions to magnetic moments obtained through basis

functions can be unequivocally transformed to magnetic

symmetry which will yield for each irrep the same diffraction

symmetry (see the conclusion in x2). This means that in the

former case the actual irrep can, in principle, be recognized or

confirmed from the symmetry of a diffraction pattern while in

the latter case establishing the correct magnetic symmetry

need not be so straightforward.

Let ’i, i = 1; . . . ; n, be a set of basis functions defined on the

carrier space of atomic magnetic moments and belonging to a

single irrep. Then the actual magnetic moments ’ are linear

combinations of n basis functions ’i ,

’ ¼
Pn
i¼1

�i’i:

The coefficients �i ði ¼ 1; . . . ; nÞ, not all of which are neces-

sarily non-zero, form a so-called order-parameter direction.

The application of a symmetry operator g to the moments ’
leads to

g’ ¼
Pn
j¼1

Pn
i¼1

Dji gð Þ�i

	 

’j;

where DjiðgÞ are matrix elements of the single irrep. From this

we can see that the minimal (kernel) symmetry induced by the

single irrep is built from symmetry operations mapped to unit

or negative unit matrices (it appears as a consequence of the

technique in use; see the text at the beginning of this para-

graph). The latter means that these operations are to be

combined with the time inversion.

Following the methods developed by Stokes & Hatch

(1988) we can look for isotropy subgroups that correspond to

other (higher than kernel) allowed symmetries by searching

for possible solutions of the equation

�j ¼
Pn
i¼1

Dji gð Þ�i;

where �i is the order parameter. According to Ascher (1977),

these isotropy subgroups are called epikernels. We shall

confine the following discussion and examples to the kernel

symmetry connected with a minimal diffraction symmetry

assured by the selected irrep.

3.1. Example 1: the two-dimensional irreducible representa-
tion E of the space group P422

For an atom at a general position there are 12 independent

basis functions (see Table 2) in the carrier space made of

magnetic moments at each of eight symmetry-equivalent

atomic positions. The kernel symmetry is P20 which implies the

minimal diffraction symmetry to be monoclinic.

From the basis functions listed in Table 2 independent

components of magnetic moments can be found as the

magnetic moments at points #1, #3, #5 and #7. The remaining

moments are related by the operations of the magnetic

symmetry P20. This implies that the selection of the two-

dimensional irrep E and the use of its basis functions is fully

equivalent to Opechowski’s classification,
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Table 2
Two-dimensional irreducible representation E of the space group P422 for k = 0.

Symmetry code #1 x, y, z #2 �x, �y, z #3 �y, x, z #4 y, �x, z #5 �x, y, �z #6 x, �y, �z #7 y, x, �z #8 �y, �x, �z

Representation matrix 1 0

0 1

� �
�1 0

0 �1

� �
0 1

�1 0

� �
0 �1

1 0

� �
1 0

0 �1

� �
�1 0

0 1

� �
0 1

1 0

� �
0 �1

�1 0

� �

Basis function #1 (1 0 0) (1 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #2 (0 1 0) (0 1 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #3 (0 0 1) (0 0 �1) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #4 (0 0 0) (0 0 0) (1 0 0) (1 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #5 (0 0 0) (0 0 0) (0 1 0) (0 1 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #6 (0 0 0) (0 0 0) (0 0 1) (0 0 �1) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #7 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (1 0 0) (1 0 0) (0 0 0) (0 0 0)
Basis function #8 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 1 0) (0 1 0) (0 0 0) (0 0 0)
Basis function #9 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 1) (0 0 �1) (0 0 0) (0 0 0)
Basis function #10 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (1 0 0) (1 0 0)
Basis function #11 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 1 0) (0 1 0)
Basis function #12 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 1) (0 0 �1)



P422; P20; M r1ð Þ;M r3ð Þ;M r5ð Þ;M r7ð Þ
� �

:

In this example all 12 basic functions are transformed into the

relationships between atoms in the four magnetic orbits and

therefore a description of the magnetic structure as a combi-

nation of 12 basic functions and a description by explicit use of

relationships following from the magnetic symmetry are

equivalent.

3.2. Example 2: the two-dimensional representation E1
of P622

For an atom occupying a general position there are again 12

independent basis functions (see Table 3) in the carrier space

made of magnetic moments of 12 atomic positions. As in

the previous case, the kernel symmetry is P20, and therefore

the minimal diffraction symmetry is monoclinic. There are

six magnetic orbits but again four independent magnetic

moments. A deeper analysis of basis functions shows that

magnetic moments at positions #1, #2, #3 and #7, #8, #9,

respectively, are related by analogous equations as follows,

R2Mðr1Þ þ RMðr2Þ þMðr3Þ ¼ 0;

R2Mðr8Þ þ RMðr7Þ þMðr9Þ ¼ 0;

where

R ¼

0 �1 0

1 �1 0

0 0 1

0
@

1
A

is the threefold rotation. These equations follow from the

mutual orthogonality conditions between the invariant

subspace of the carrier space generated by the selected irrep

E1 and those generated by one-dimensional irreps whose

kernels contain the threefold rotation. Those relationships are

not involved in the magnetic space group explicitly and

therefore the direct use of the 12 basis functions found makes

a stronger restriction than would follow from the magnetic

space group itself. In order to make both descriptions

equivalent we have to include these relationships as additional

restrictions in the latter case. This can be expressed in

Opechowski’s classification as

P622; P20; M r1ð Þ;M r2ð Þ;M r3ð Þ ¼ �R2Mðr1Þ � RMðr2Þ;
M r7ð Þ;M r8ð Þ;M r9

� �
¼ �R2Mðr8Þ � RMðr7Þ

	 

:

Similar restrictions to those stated for P622 can be found in

other phase transitions driven by higher-dimensional irreps of

trigonal, hexagonal or cubic paramagnetic space groups. Such
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Table 3
Two-dimensional irreducible representation E1 of the space group P622 for k = 0.

" = �1/2 +
ffiffiffi
3
p

/2i.

Symmetry code #1 x, y, z #2 �y, x � y, z #3 �x + y, �x, z #4 �x, �y, z #5 y, �x + y, z #6 x � y, x, z

Representation matrix 1 0

0 1

� �
" 0

0 "�

� �
"� 0

0 "

� �
�1 0

0 �1

� �
�" 0

0 �"�

� �
�"� 0

0 �"

� �

Basis function #1 (1 0 0) (0 0 0) (1 1 0) (1 0 0) (0 0 0) (1 1 0)
Basis function #2 (0 1 0) (0 0 0) (�1 0 0) (0 1 0) (0 0 0) (�1 0 0)
Basis function #3 (0 0 1) (0 0 0) (0 0 �1) (0 0 �1) (0 0 0) (0 0 1)
Basis function #4 (0 0 0) (1 0 0) (0 �1 0) (0 0 0) (1 0 0) (0 �1 0)
Basis function #5 (0 0 0) (0 1 0) (1 1 0) (0 0 0) (0 1 0) (1 1 0)
Basis function #6 (0 0 0) (0 0 1) (0 0 �1) (0 0 0) (0 0 �1) (0 0 1)
Basis function #7 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #8 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #9 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #10 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #11 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #12 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)

Symmetry code #7 y, x, �z #8 x � y, �y, �z #9 �x, �x + y, �z #10 �y, �x, �z #11 �x + y, y, �z #12 x, x� y,�z

Representation matrix 0 1

1 0

� �
0 "�

" 0

� �
0 "
"� 0

� �
0 �1

�1 0

� �
0 �"�

�" 0

� �
0 �"
�"� 0

� �

Basis function #1 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #2 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #3 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #4 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #5 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #6 (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0) (0 0 0)
Basis function #7 (1 0 0) (0 0 0) (0 �1 0) (1 0 0) (0 0 0) (0 �1 0)
Basis function #8 (0 1 0) (0 0 0) (1 1 0) (0 1 0) (0 0 0) (1 1 0)
Basis function #9 (0 0 1) (0 0 0) (0 0 �1) (0 0 �1) (0 0 0) (0 0 1)
Basis function #10 (0 0 0) (1 0 0) (1 1 0) (0 0 0) (1 0 0) (1 1 0)
Basis function #11 (0 0 0) (0 1 0) (�1 0 0) (0 0 0) (0 1 0) (�1 0 0)
Basis function #12 (0 0 0) (0 0 1) (0 0 �1) (0 0 0) (0 0 �1) (0 0 1)



relationships for the kernel symmetries and their variants

appearing for the epikernels will be published separately.

The fact that the magnetic space groups in these cases yield

implicit restrictions connected to the selection of certain irreps

only confirms that looking for kernels and epikernels is very

useful. Magnetic symmetry can serve as a basis for further

theoretical considerations about secondary effects induced by

coupling of lattice and magnetic moments. The magnetic space

group can also be used for finding all compatible possible

irreps, when more irreps are to be used to test finer changes

induced by the phase transition.

4. Superspace approach to magnetic structures for
k 6¼ 0

4.1. Magnetic diffraction symmetry for k 6¼ 0

The superspace approach developed by de Wolff et al.

(1981) makes it possible to describe periodical perturbations,

commensurate or incommensurate with the basic three-

dimensional translation symmetry. For magnetic modulated

structures the magnetization density can be generalized to

a higher-dimensional space to recover the translational sym-

metry. An equation analogous to (3) allows a generalized

structure factor to be introduced. In the following we shall

confine ourselves to one modulation vector k.

The magnetic moment of the atom � can be expressed as a

Fourier series,

M� k � r�ð Þ ¼ M�;0 þ
P
m

M�;ms sin 2�mk � r�ð Þ
�

þ M�;mc cos 2�mk � r�ð Þ
�
; ð10Þ

where M�;0, M�;ms and M�;mc are the absolute term, amplitude

of the sine term and amplitude of the cosine term, respectively.

The magnetic structure factor derived from the kinematic

theory of diffraction leads to sharp diffraction spots localized

at diffraction points H and Q = H�mk ðm > 0Þ,

Fmag Hð Þ ¼ p
XNmag

�¼1

f� Hj jð ÞM�;0T� Hð Þ exp 2�iH � r�ð Þ;

Fmag H�mkð Þ ¼ p
XNmag

�¼1

f� H�mkj jð ÞT� H�mkð Þ ð11Þ

�
M�;mc � iM�;ms

2
exp 2�iH � r�

[for explanation of the symbols see equation (4)].

The formulas (11) do not include secondary modulation

effects of atomic positions. For such effects it must be

combined with the structure-factor formula of positional

modulated structures (see, for example, Perez-Mato et al.,

1986; Petřı́ček & Coppens, 1988).

The rotation and translation part of the superspace

symmetry operation with respect to the generalized (3+1)-

dimensional basis has the following matrix form,

ŜS ¼
RE 0

RM RI

	 

; �

sE

sI

	 
����
� �

; ð12Þ

where RE;RM;RI and � = �1 are external 3�3, mixed 1�3,

internal 1�1 block matrices and the time inversion sign,

respectively. The right-upper 3�1 block is just a zero column.

The non-zero matrix blocks are related by the additional

condition

RM ¼ kRE � RIk:

Then the modulation function of the magnetic moment at the

symmetry-related atom r� ¼ ŜSr� ¼ REr� þ sE is

M� x4;�

� �
¼ RmagM�;0 þ Rmag

P
n

M�;ns sin 2�nx4;�

�

þ M�;nc cos 2�nx4;�

�
; ð13Þ

where

Rmag ¼ � detðREÞRE;

x4;� ¼ k � r�;

x4;� ¼ k � r� þ R�1
I ðk � sE � sIÞ:

Therefore, the way used to derive diffraction symmetry (8)

and extinction conditions (9) for k = 0 can be used for

modulated structures too. The only difference is that we are

using here the generalized magnetization density and that the

diffraction vector is expressed as Q = H�mk ðm > 0Þ. The

symmetry of a diffraction pattern of modulated magnetic

structures is again equal to the Laue symmetry derived from

the magnetic superspace group.

4.2. Representation analysis for k 6¼ 0

For a modulated structure the representation analysis

should start from representations of the paramagnetic space

group. All irreps can again be divided into two families. Any

irrep of the first one yields symmetry groups containing the

symmetry element ŜS = (E,�1|0, 0, 0, 0) [now defined in (3+1)-

dimensional superspace], and may induce only paramagnetic

phases. Irreps of the second family can give rise to, among

others, magnetic groups containing the symmetry element ŜS =

(E,�1|0, 0, 0, 1/2) which has a selective effect to even and odd

harmonics in (10). All even-order harmonics and the absolute

term become zeros but, on the other hand, the symmetry

element has no effect on the odd harmonics. For a polar vector

field the effect would be reversed.

In accordance with the notation for grey magnetic groups

and for superspace groups as defined in International Tables

for Crystallography, Vol. C (1999, x9.8.3.3), we can extend

symbols of such magnetic groups with the symbol 10 combined

with 0 or with s [e.g. Pnma10ð	00Þ0sss].

The problem of equivalence between using linear combi-

nations of basis functions and the magnetic superspace group

is analogous to the non-modulated case. For trigonal and

hexagonal symmetry some additional conditions are to be

added to the magnetic superspace groups to make these

descriptions equivalent. The reasons for using magnetic

symmetry remain the same too.
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4.3. Commensurate case

It has been shown (e.g. Ribeiro, 2007) that for coupling of

magnetic ordering and ferroelectricity the symmetry of a

commensurate structure can play a very important role. The

problem of how the incommensurate symmetry is transferred

to the supercell has been solved by several authors (e.g.

Yamamoto & Nakazawa, 1982; Tamazyan et al., 1994). The

symmetry operation from the superspace group of a

commensurate structure with k = (p1=q, p2=q, p3=q) is

applicable in the supercell if the expression

k � sE þ lð Þ � sI þ 1� RIð Þt0 ð14Þ

has an integer value for at least one lattice vector l. The

parameter t0 defines the shift of q commensurate sections of

four-dimensional space along the fourth axis. From the form of

(14) it is clear that for symmetry operations with RI = �1 we

can always find a value of t0 (generally different for each

symmetry operation) to fulfil the condition. On the other

hand, for the superspace operations with RI = 1, the origin

shift cannot change their transferability to the supercell.

The condition (14) can be applied to magnetic superspace

groups as well. Specifically the symmetry operation ŜS =

(E, �1|0, 0, 0, 1/2) with k = (p/q, 0, 0) cannot be transferred

into the supercell for odd q. On the other hand, for q = 2n we

obtain the symmetry operation ŜS3d = (E, �1|1/2, 0, 0), which

means that the magnetic moments have alternating orienta-

tions with periodicity na when going along the first axis of the

commensurate cell. This is in full accordance with the fact that

only odd harmonic terms are present in the modulation

function (10).

5. Conclusions

It has been shown that in the determination of magnetic

structures the use of both magnetic space/superspace groups

and representation analysis plays a different, rather comple-

mentary, role. While magnetic symmetry operations have a

direct impact (which differs for the rotation and the transla-

tion parts) on a diffraction pattern of the crystal, the basis

functions of the active irrep(s) can be used to find the ordering

of magnetic moments. It appears that, at least for the hexa-

gonal family for certain irreps of paramagnetic space groups

with k = 0, there exist extra relationships among three

magnetic moments where any two determine the third. Such

relationships do not have a direct impact on the diffraction

symmetry, and therefore magnetic groups must be comple-

mented with specific restrictions on the magnetic moments.

Using the full set of restrictions is very important for refine-

ment of magnetic structures because it minimizes correlations

between parameters. Calculation is then more stable and

reliable. Moreover, using magnetic symmetry helps to under-

stand the formation of magnetic domains.

Combination of representation analysis and the knowledge

of the symmetry of the diffraction pattern expressed in the

magnetic space/superspace groups seems to be an ideal

concept for description and calculation of magnetic structures.

This article will serve as a theoretical basis for more practically

oriented publications about the implementation of magnetic

symmetry combined with representation analysis in the system

of programs Jana2006 (Petřı́ček et al., 2006) and applications

of this program to some selected structures (Petřı́ček et al.,

2010). It should be noted that practical results have already

been obtained using Jana2006 and that they fully support our

conclusions given here.
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